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CHAPTER 1 — BASIC RADAR PRINCIPLES AND GENERAL CHARAC

INTRODUCTION

The word radar is an acronym derived from the phraseRAdio Detection
AndRanging and applies to electronic equipment designed for detecting and
tracking objects (targets) at considerable distances. The basic principle
behind radar is simple - extremely short bursts of radio energy (traveling at
the speed of light) are transmitted, reflected off a target and then returned as
an echo.

Radar makes use of a phenomenon we have all observed, that of the
ECHO PRINCIPLE. To illustrate this principle, if a ship’s whistle were
sounded in the middle of the ocean, the sound waves would dissipate their
energy as they traveled outward and at some point would disappear entirely.
If, however the whistle sounded near an object such as a cliff some of the
radiated sound waves would be reflected back to the ship as an echo.

The form of electromagnetic signal radiated by the radar depends upon
the type of information needed about the target. Radar, as designed for
marine navigation applications, is pulse modulated. Pulse-modulated radar
can determine the distance to a target by measuring the time required for an
extremely short burst of radio-frequency (r-f) energy to travel to the target
and return to its source as a reflected echo. Directional antennas are used for
transmitting the pulse and receiving the reflected echo, thereby allowing
determination of the direction or bearing of the target echo.

Once time and bearing are measured, these targets or echoes are
calculated and displayed on the radar display. The radar display provides the
operator a birds eye view of where other targets are relative to own ship.

Radar is an active device. It utilizes its own radio energy to detect and
track the target. It does not depend on energy radiated by the target itself.
The ability to detect a target at great distances and to locate its position with
high accuracy are two of the chief attributes of radar.
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A BRIEF HISTORY

Radar, the device which is used for detection and ranging of contacts,
independent of time and weather conditions, was one of the most important
scientific discoveries and technological developments that emerged from
WWII. It’s development, like that of most great inventions was mothered by
necessity. Behind the development of radar lay more than a century of radio
development.

The basic idea of radar can be traced back to the classical experiments on
electromagnetic radiation conducted by the scientific community in the 19th
century. In the early 1800s, an English physicist, Michael Faraday,
demonstrated that electric current produces a magnetic field and that the
energy in this field returns to the circuit when the current is stopped. In 1864
the Scottish physicist, James Maxwell, had formulated the general equations
of the electromagnetic field, determining that both light and radio waves are
actually electromagnetic waves governed by the same fundamental laws but
having different frequencies. He proved mathematically that any electrical
disturbance could produce an effect at a considerable distance from the point
of origin and that this electromagnetic energy travels outward from the
source in the form of waves moving at the speed of light.

At the time of Maxwell’s conclusions there was no available means to
propagate or detect electromagnetic waves. It was not until 1886 that
Maxwell’s theories were tested. The German physicist, Heinrich Hertz, set
out to validate Maxwell’s general equations. Hertz was able to show that
electromagnetic waves travelled in straight lines and that they can be
reflected from a metal object just as light waves are reflected by a mirror.

In 1904 the German engineer, Christian Hulsmeyer obtained a patent for a
device capable of detecting ships. This device was demonstrated to the
German navy, but failed to arouse interest probably due in part to its very
limited range. In 1922, Guglielmo Marconi drew attention to the work of
Hertz and repeated Hertz’s experiments and eventually proposed in principle
what we know now as marine radar.

The first observation of the radar effect was made in 1922 by Dr. Albert
Taylor of the Naval Research Laboratory (NRL) in Washington, D.C. Dr.
Taylor observed that a ship passing between a radio transmitter and receiver
reflected some of the waves back to the transmitter. In 1930 further tests at
the NRL observed that a plane flying through a beam from a transmitting
antenna caused a fluctuation in the signal. The importance of radar for the
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RADAR PROPAGATION CHARACTERISTICS

THE RADIO WAVE

To appreciate the capabilities and limitations of a marine radar and to be
able to use it to full advantage, it is necessary to comprehend the
characteristics and behavior of radio waves and to grasp the principles of
their generation and reception, including the echo display as seen by the
observer. Understanding the theory behind the target presentation on the
radar scope will provide the radar observer a better understanding of the art
and science of radar interpretation.

Radar (radio) waves, emitted in pulses of electromagnetic energy in the
radio-frequency band 3,000 to 10,000 MHz used for shipborne navigational
radar, have many characteristics similar to those of other waves. Like light
waves of much higher frequency, radar waves tend to travel in straight lines
or rays at speeds approximating that of light. Also, like light waves, radar
waves are subject to refraction or bending in the atmosphere.

Radio-frequency energy travels at the speed of light, approximately
162,000 nautical miles per second; therefore, the time required for a pulse to
travel to the target and return to its source is a measure of the distance to the
target. Since the radio-frequency energy makes a round trip, only half the
time of travel determines the distance to the target. The round trip time is
accounted for in the calibration of the radar.

The speed of a pulse of radio-frequency energy is so fast that the pulse can
circumnavigate the earth at the equator more than 7 times in 1 second. It should
be obvious that in measuring the time of travel of a radar pulse or signal from
one ship to a target ship, the measurement must be an extremely short time
interval. For this reason, the MICROSECOND (µsec) is used as a measure of
time for radar applications. The microsecond is one-millionth part of 1 second,
i.e., there are 1,000,000 microseconds in 1 second of time.

Radio waves have characteristics common to other forms of wave motion
such as ocean waves. Wave motion consists of a succession of crests and
troughs which follow one another at equal intervals and move along at a
constant speed. Like waves in the sea, radar waves have energy, frequency,
amplitude, wavelength, and rate of travel. Whereas waves in the sea have
mechanical energy, radar waves have electromagnetic energy, usually
expressed in watt units of power. An important characteristic of radio waves
in connection with radar is polarization. This electromagnetic energy has
associated electric and magnetic fields, the directions of which are at right
angles to each other. The orientation of the ELECTRIC AXIS in space
establishes what is known as the POLARIZATION of the wave. Horizontal
polarization is normally used with navigational radars, i.e., the direction of
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The CYCLE is a complete alternation or oscillation from one crest
through a trough to the next crest.

When the wavelength is 3.2 centimeters (0.000032 km),

THE RADAR BEAM

The pulses of r-f energy emitted from the feedhorn at the focal point of a
reflector or emitted and radiated directly from the slots of a slotted
waveguide antenna would, for the most part, form a single lobe-shaped
pattern of radiation if emitted in free space. Figure 1.2 illustrates this free
space radiation pattern, including the undesirable minor lobes or SIDE
LOBES associated with practical antenna design. Because of the large
differences in the various dimensions of the radiation pattern, figure 1.2 is
necessarily distorted.
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Figure 1.2 - Free space radiation pattern.
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ect waves depending upon whether they are
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iation.

lower region of the INTERFERENCE
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obvious that if r-f energy is to be reflected
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AGE DIAGRAM as illustrated in figure
nd analysts to predict regions in which targets

of a book it would be impossible to illustrate
scale with antenna height being in feet and

of the interference pattern being in miles. In
e presentation of the lobes, non-linear
tical beam width are used.

ct and indirect waves.
The radiation diagram illustrated in figure 1.3 depicts relative values of
power in the same plane existing at the same distances from the antenna or
the origin of the radar beam. Maximum power is in the direction of the axis
of the beam. Power values diminish rapidly in directions away from the axis.
The beam width in this case is taken as the angle between the half-power
points.

For a given amount of transmitted power, the main lobe of the radar beam
extends to a greater distance at a given power level with greater
concentration of power in narrower beam widths. To increase maximum
detection range capabilities, the energy is concentrated into as narrow a
beam as is feasible. Because of practical considerations related to target
detection and discrimination, only the horizontal beam width is quite narrow,
typical values being between about 0.65˚ to 2.0˚. The vertical beam width is
relatively broad, typical values being between about 15˚ to 30˚.

The beam width is dependent upon the frequency or wavelength of the
transmitted energy, antenna design, and the dimensions of the antenna.

For a given antenna size (antenna aperture), narrower beam widths are
obtained when using shorter wavelengths. For a given wavelength, narrower
beam widths are obtained when using larger antennas.

The slotted waveguide antenna has largely eliminated the side-lobe
problem.

EFFECT OF SEA SURFACE ON RADAR BEAM

With radar waves being propagated in the vicinity of the surface of the
sea, the main lobe of the radar beam, as a whole, is composed of a number of
separate lobes as opposed to the single lobe-shaped pattern of radiation as
emitted in free space. This phenomenon is the result of interference between
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such that during normal transmi
the sea at points from near the a
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reflected from the surface of th
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Figure 1.3 - Radiation diagram.

Figure 1.4 - Dire
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Figure 1.5 - Vertical-plane coverage diagram (3050 MHz, antenna height 125 feet, wave height 4 feet).
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t 0 feet).
Figure 1.6 - Vertical-plane coverage diagram (1000 MHz, vertical beam width 10˚, antenna height 80 feet, wave heigh
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The lengths of the various lobes illustrated in figures 1.5 and 1.6 should be
given no special significance with respect to the range capabilities of a
particular radar set. As with other coverage diagrams, the lobes are drawn to
connect points of equal field intensities. Longer and broader lobes may be
drawn connecting points of equal, but lesser, field intensities.

The vertical-plane coverage diagram as illustrated in figure 1.6, while not
representative of navigational radars, does indicate that at the lower
frequencies the interference pattern is more coarse than the patterns for
higher frequencies. This particular diagram was constructed with the
assumption that the free space useful range of the radar beam was 50
nautical miles. From this diagram it is seen that the ranges of the useful lobes
are extended to considerably greater distances because of the reinforcement
of the direct radar waves by the indirect waves. Also, the elevation of the

lowest lobe is higher than it wou
illustrates the vertical view of t
practical antenna design. In ex
the reader should keep in m
dimensional.

Antenna height as well as freq
lobes in the interference pattern
the interference pattern increa
height as well as increases in
interference pattern.

The pitch and roll of the ship r
interference pattern.
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ATMOSPHERIC FACTORS AFFECTING THE RADAR HORIZON

THE RADAR HORIZON

The affect of the atmosphere on the horizon is a further factor which
should be taken into account when assessing the likelihood of detecting a
particular target and especially where the coastline is expected.

Generally, radar waves are restricted in the recording of the range of low-
lying objects by the radar horizon. The range of the radar horizon depends
on the height of the antenna and on the amount of bending of the radar wave.
The bending is caused by diffraction and refraction. Diffraction is a property
of the electromagnetic wave itself. Refraction is due to the prevailing
atmospheric conditions. There is, therefore, a definite radar horizon.

DIFFRACTION

Diffraction is the bending of a wave as it passes an obstruction. Because
of diffraction there is some illumination of the region behind an obstruction
or target by the radar beam. Diffraction effects are greater at the lower
frequencies. Thus, the radar beam of a lower frequency radar tends to
illuminate more of the shadow region behind an obstruction than the beam of
radar of higher frequency or shorter wavelength.

REFRACTION

Refraction affects the range at which objects are detected. The
phenomenon of refraction should be well-known to every navigation officer.
Refraction takes place when the velocity of the wave is changed. This can
happen when the wave front passes the boundary of two substances of
differing densities. One substance offers more resistance to the wave than the
other and therefore the velocity of the wave will change. Like light rays,
radar rays are subject to bending or refraction in the atmosphere resulting
from travel through regions of different density. However, radar rays are
refracted slightly more than light rays because of the frequencies used. If the
radar waves actually traveled in straight lines or rays, the distance to the
horizon grazed by these rays would be dependent only on the height of the
antenna, assuming adequate power for the rays to reach this horizon.
Without the effects of refraction, the distance to the RADAR HORIZON
would be the same as that of the geometrical horizon for the antenna height.

Standard Atmospheric Condition

The distance to the radar hor
the following formula. Where h
distance, d, to the radar hori
atmospheric conditions, may be

With the distances to the geo
and the distance to the visible or
the range of the radar horizon
which again is greater than that
rays in the standard atmosphe
downwards approximating the c

The distance to the radar hori
which echoes may be received
is transmitted, echoes may be re
if their reflecting surfaces extend
horizon is the distance at which 
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atmospheric temperature, pres
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Standard conditions are preci
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10

Pressure = 1013 mb decreasing at 36 mb/1000 ft of height
Temperature = 15˚C decreasing at 2˚C/1000 ft of height
Relative Humidity = 60% and constant with height.

These conditions give a refractive index of 1.00325 which decreases at
0.00013 units/1000 ft of height. The definition of “standard” conditions
relates to the vertical composition of the atmosphere. Mariners may not be
able to obtain a precise knowledge of this and so must rely on a more general
appreciation of the weather conditions, the area of the world, and of the time
of the year.

While the atmospheric conditions at any one locality during a given
season may differ considerably from standard atmospheric conditions, the
slightly downward bending of the light and radar rays may be described as
the typical case.

While the formula for the distance to the radar horizon
is based upon a wavelength of 3cm, this formula may be

used in the computation of the distance to the radar horizon for other
wavelengths used with navigational radar. The value so determined should
be considered only as an approximate value because the mariner generally
has no means of knowing what actual refraction conditions exist.

Sub-refraction

The distance to the radar horizon is reduced. This condition is not as
common as super-refraction. Sub-refraction can occur in polar regions where
Arctic winds blow over water where a warm current is prevalent. If a layer of
cold, moist air overrides a shallow layer of warm, dry air, a condition known
as SUB-REFRACTION may occur (see figure 1.8). The effect of sub-
refraction is to bend the radar rays upward and thus decrease the maximum
ranges at which targets may be detected.

Sub-refraction also affects minimum ranges and may result in failure to
detect low lying targets at short range. It is important to note that sub-
refraction may involve an element of danger to shipping where small vessels
and ice may go undetected. The officer in charge of the watch should be
especially mindful of this condition and extra precautions be administered
such as a reduction in speed and the posting of extra lookouts.

Super-refraction

The distance to the radar ho
turbulence when there is an upp
of cold, moist air, a condition kn
(see figure 1.9). For this conditi
little or no turbulence, otherwis
and the boundary conditions di
increase the downward bending
at which targets may be detecte
tropics when a warm land bree
especially noticeable on the long

d( 1.22 h)=

Figure 1.8

Figure 1.9 -



11

is mainly seasonal, and great changes from
other parts of the world, especially those in

areas recur often, the extent of nonstandard
nsiderably from day to day.
fferent places in the world where known
to the map to see their location in relation to
rea during different seasons of the year.

States (Area 1).Ducting is common in
t of the coast, but in the Florida region the
ith a maximum in the winter season.
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xpected. During the dry season, on the other
cting then is the rule, not the exception, and on
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n begins early in June, ducting disappears on
Sea. Along the western coasts, however,
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al on top and the colder, humid monsoon
ditions are favorable for the formation of an
t importance to radar operation in the Strait

asonal trend of ducting conditions in the
the Arabian Sea, with standard conditions

monsoon. Ducting is found during the dry
Extra Super-refraction or Ducting

Most radar operators are aware that at certain times they are able to detect
targets at extremely long ranges, but at other times they cannot detect targets
within visual ranges, even though their radars may be in top operating
condition in both instances.

These phenomena occur during extreme cases of super-refraction. Energy
radiated at angles of 1˚ or less may be trapped in a layer of the atmosphere
called a SURFACE RADIO DUCT. In the surface radio duct illustrated in
figure 1.10, the radar rays are refracted downward to the surface of the sea,
reflected upward, refracted downward again within the duct, and so on
continuously.

The energy trapped by the duct suffers little loss; thus, targets may be
detected at exceptionally long ranges. Surface targets have been detected at
ranges in excess of 1,400 miles with relatively low-powered equipment.
There is a great loss in the energy of the rays escaping the duct, thus
reducing the chances for detection of targets above the duct.

Ducting sometimes reduces the effective radar range. If the antenna is
below a duct, it is improbable that targets above the duct will be detected. In
instances of extremely low-level ducts when the antenna is above the duct,
surface targets lying below the duct may not be detected. The latter situation
does not occur very often.

Ducting Areas

Although ducting conditions can happen any place in the world, the
climate and weather in some areas make their occurrence more likely. In
some parts of the world, particularly those having a monsoonal climate,
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Figure 1.10 - Ducting.
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Figure 1.11 - Ducting areas.
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Pacific Ocean (Area 6).Frequent occurrences of ducting around
Guadalcanal, the east coast of Australia, and around New Guinea and Korea
have been experienced. Observations along the Pacific coast of the United
States indicate frequent ducting, but no clear indication of its seasonal trend
is available. Meteorological conditions in the Yellow Sea and Sea of Japan,
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WEATHER FACTORS AFFECTING THE RADAR HORIZON

The usual effects of weather are to reduce the ranges at which targets can
be detected and to produce unwanted echoes on the radarscope which may
obscure the returns from important targets or from targets which may be
dangerous to one’s ship. The reduction of intensity of the wave experienced
along its path is known asattenuation.

Attenuation is caused by the absorption and scattering of energy by the
various forms of precipitation. The amount of attenuation caused by each of
the various factors depends to a substantial degree on the radar wavelength.
It causes a decrease in echo strength. Attenuation is greater at the higher
frequencies or shorter wavelengths.

Attenuation by rain, fog, clouds, hail, snow, and dust

The amount of attenuation caused by these weather factors is dependent
upon the amount of water, liquid or frozen, present in a unit volume of air
and upon the temperature. Therefore, as one would expect, the affects can
differ widely. The further the radar wave and returning echo must travel
through this medium then the greater will be the attenuation and subsequent
decrease in detection range. This is the case whether the target is in or
outside the precipitation. A certain amount of attenuation takes place even
when radar waves travel through a clear atmosphere. The affect will not be
noticeable to the radar observer. The effect of precipitation starts to become
of practical significance at wavelengths shorter than 10cm. In any given set
of precipitation conditions, the (S-band) or 10cm will suffer less attenuation
than the (X-band) or 3cm.

Rain

In the case of rain the particle
take the form of water droplet
attenuation to the rate of prec
appreciable proportion of the 3c
produced and there will be se
attenuation. If the target is wit
raindrops will further decrease i
as from small vessels and buoys
stronger than that of the rain. A
encountered in the tropics, can 

Continuous rainfall over a la
screen brighter than the rest and
looks similar to sea clutter. It ca
is due to a gradual decrease in r
into the rain area.

Fog

In most cases fog does not a
but a very dense fogbank whi
significant reduction in detection

A vessel encountering areas
smog may find a somewhat high



, because the water content of the heaviest
at of even moderate rain.
nd that in areas receiving and collecting
collecting on possible danger targets it may
Accumulation of snow produces a limited
duces the detection range of an otherwise

n radar detection in the presence of dust and
ticle size, detectable responses are extremely
pect a low level of attenuation.

aves going through the earth’s atmosphere
mally bend slightly with the curvature of the
ditions will produce a modification of this
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Clouds

The water droplets which form clouds are too small to produce a
detectable response at the 3cm wavelength. If there is precipitation in the
cloud then the operator can expect a detectable echo.

Hail

With respect to water, hail which is essentially frozen rain reflects radar
energy less effectively than water. Therefore, in general the clutter and
attenuation from hail are likely to prove less detectable than that from rain.

Snow

Similar to the effects of hail, the overall effect of clutter on the picture is
less than that due to rain. Falling snow will only be observed on the displays
of 3cm except during heavy snowfall where attenuation can be observed on a
10cm set.

The strength of echoes from snow depends upon the size of the snowflake
and the rate of precipitation. For practical purposes, however, the significant

factor is the rate of precipitation
snowfall will very rarely equal th

It is important to keep in mi
snowfall and where the snow is
render them less detectable.
absorption characteristic and re
strong target.

Dust

There is a general reduction i
sandstorms. On the basis of par
unlikely and the operator can ex

Unusual Propagation Conditions

Similar to light waves, radar w
are subject to refraction and nor
earth. Certain atmospheric con
normal refraction.
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A BASIC RADAR SYSTEM

RADAR SYSTEM CONSTANTS

Before describing the functions of the components of a marine radar, there are
certain constants associated with any radar system that will be discussed. These
are carrier frequency, pulse repetition frequency, pulse length, and power
relation. The choice of these constants for a particular system is determined by
its operational use, the accuracy required, the range to be covered, the practical
physical size, and the problems of generating and receiving the signals.

Carrier Frequency

The carrier frequency is the frequency at which the radio-frequency
energy is generated. The principal factors influencing the selection of the
carrier frequency are the desired directivity and the generation and reception
of the necessary microwave radio-frequency energy.

For the determination of direction and for the concentration of the
transmitted energy so that a greater portion of it is useful, the antenna should
be highly directive. The higher the carrier frequency, the shorter the
wavelength and hence the smaller is the antenna required for a given
sharpness of the pattern of radiated energy.

The problem of generating and amplifying reasonable amounts of radio-
frequency energy at extremely high frequencies is complicated by the
physical construction of the tubes to be used. The common tube becomes
impractical for certain functions and must be replaced by tubes of special
design. Among these are theklystron andmagnetron.

Since it is very difficult to amplify the radio-frequency echoes of the
carrier wave, radio-frequency amplifiers are not used. Instead, the frequency
of the incoming signals (echoes) is mixed (heterodyned) with that of a local
oscillator in acrystal mixer to produce a difference frequency called the
intermediate frequency.This intermediate frequency is low enough to be
amplified in suitableintermediate frequency amplifier stages in the receiver.

Pulse Repetition Frequency

The Pulse Repetition Frequency (PRF), sometimes referred to as Pulse
Repetition Rate (PRR) is the number of pulses transmitted per second. Some
characteristic values may be 600, 1000, 1500, 2200 and 3000 pulses per
second. The majority of modern marine radars operate within a range of 400

to 4000 pulses per second.
If the distance to a target is

required for one pulse to travel t
is necessary that this cycle be
following is transmitted. This is t
be separated by relatively long
transmission would occur durin
preceding pulse. Using the same
the relatively weak reflected ech
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echo to return from any target lo
of the system. Otherwise, the re
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measurable range of a radar se
the pulse repetition rate. Ass
maximum range at which echoe
lowering the pulse repetition rat
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and enough are returned to de
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determined by dividing 80,915 (r
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transmitted in order to receive
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minute, a radar set having a P
approximately 9 pulses for
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Pulse Length

Pulse length is defined as the
usually measured in microsecon

The minimum range at whic
largely by the pulse length. If a
echo is returned to the receiver



the pulse length, the higher will be the
pulse repetition time, the lower will be the

re shown in figure 1.12.

ar transmitter can be described in terms of
t radio-frequency energy is radiated. This
UTY CYCLE and may be represented as

gth of 2 microseconds and a pulse repetition
ulse repetition time = 2,000 microseconds),

p of peak and average power.

pulse length
pulse repetition time
-------------------------------------------------------------

pulse length
ulse repetition time
----------------------------------------------------------

2µsec
2 000 µsec,
-------------------------- 0.001=
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of the echo, obviously, will be masked by the transmitted pulse. For
example, a radar set having a pulse length of 1 microsecond will have a
minimum range of 164 yards. This means that the echo of a target within this
range will not be seen on the radarscope because of being masked by the
transmitted pulse.

Since the radio-frequency energy travels at a speed of 161,829 nautical
miles per second or 161,829 nautical miles in one million microseconds, the
distance the energy travels in 1 microsecond is approximately 0.162 nautical
mile or 328 yards. Because the energy must make a round trip, the target
cannot be closer than 164 yards if its echo is to be seen on the radarscope
while using a pulse length of 1 microsecond. Consequently, relatively short
pulse lengths, about 0.1 microsecond, must be used for close-in ranging.

Many radar sets are designed for operation with both short and long pulse
lengths. Many of these radar sets are shifted automatically to the shorter
pulse length on selecting the shorter range scales. On the other radar sets, the
operator must select the radar pulse length in accordance with the operating
conditions. Radar sets have greater range capabilities while functioning with
the longer pulse length because a greater amount of energy is transmitted in
each pulse.

While maximum detection range capability is sacrificed when using the
shorter pulse length, better range accuracy and range resolution are obtained.
With the shorter pulse, better definition of the target on the radar-scope is
obtained; therefore, range accuracy is better. RANGE RESOLUTION is a
measure of the capability of a radar set to detect the separation between
those targets on the same bearing but having small differences in range. If
the leading edge of a pulse strikes a target at a slightly greater range while
the trailing part of the pulse is still striking a closer target, it is obvious that
the reflected echoes of the two targets will appear as a single elongated
image on the radarscope.

Power Relation

The useful power of the transmitter is that contained in the radiated pulses
and is called the PEAK POWER of the system. Power is normally measured
as an average value over a relatively long period of time. Because the radar
transmitter is resting for a time that is long with respect to the operating
time, the average power delivered during one cycle of operation is relatively
low compared with the peak power available during the pulse time.

A definite relationship exists between the average power dissipated over
an extended period of time and the peak power developed during the pulse
time.

The PULSE REPETITION TIME, or the overall time of one cycle of
operation, is the reciprocal of the pulse repetition rate (PRR). Other factors

remaining constant, the longer
average power; the longer the
average power.

These general relationships a

The operating cycle of the rad
the fraction of the total time tha
time relationship is called the D
follows:

For a radar having a pulse len
rate of 500 cycles per second (p
the

Figure 1.12 - Relationshi

average power
peak power

----------------------------------------- =

duty cycle
p
---=

duty cycle =
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er.
radio-frequency pulses (echoes) returned
as video pulses passed to the indicator.
indication of the echo pulses in a manner
tion.

sic pulse-modulated radar system
Likewise, the ratio between the average power and peak power may be
expressed in terms of the duty cycle.

In the foregoing example assume that the peak power is 200 kilowatts.
Therefore, for a period of 2 microseconds a peak power of 200 kilowatts is
supplied to the antenna, while for the remaining 1998 microseconds the
transmitter output is zero. Because average power is equal to peak power times
the duty cycle,

High peak power is desirable in order to produce a strong echo over the
maximum range of the equipment. Low average power enables the
transmitter tubes and circuit components to be made smaller and more
compact. Thus, it is advantageous to have a low duty cycle. The peak power
that can be developed is dependent upon the interrelation between peak and
average power, pulse length, and pulse repetition time, or duty cycle.

COMPONENTS AND SUMMARY OF FUNCTIONS

While pulse-modulated radar systems vary greatly in detail, the principles
of operation are essentially the same for all systems. Thus, a single basic
radar system can be visualized in which the functional requirements are
essentially the same as for all specific equipments.

The functional breakdown of a basic pulse-modulated radar system
usually includes six major components, as shown in the block diagram,
figure 1.13. The functions of the components may be summarized as
follows:

The power supplyfurnishes all AC and DC voltages necessary for the
operation of the system components.

The modulator produces the synchronizing signals that trigger the
transmitter the required number of times per second. It also triggers the
indicator sweep and coordinates the other associated circuits.

The transmittergenerates the radio-frequency energy in the form of short
powerful pulses.

Theantenna systemtakes the radio-frequency energy from the transmitter,
radiates it in a highly directional beam, receives any returning echoes, and

passes these echoes to the receiv
Thereceiveramplifies the weak

by a target and reproduces them 
The indicator produces a visual

that furnishes the desired informa
duty cycle average power

peak power
-----------------------------------------=

average power 200 kw x0.001 0.2 kilowatt= =

Figure 1.13 - Block diagram of a ba
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FUNCTIONS OF COMPONENTS

Power Supply

In figure 1.13 the power supply is represented as a single block.
Functionally, this block is representative. However, it is unlikely that any one
supply source could meet all the power requirements of a radar set. The
distribution of the physical components of a system may be such as to make
it impractical to group the power-supply circuits into a single physical unit.
Different supplies are needed to meet the varying requirements of a system
and must be designed accordingly. The power supply function is performed
by various types of power supplies distributed among the circuit components
of a radar set.

In figure 1.14 the modulator, transmitter, and receiver are contained in the
same chassis. In this arrangement, the group of components is called a
TRANSCEIVER. (The term transceiver is an acronym composed from the
words TRANSmitter and reCEIVER.)

Modulator

The function of the modulator is to insure that all circuits connected with the
radar system operate in a definite time relationship with each other and that the
time interval between pulses is of the proper length. The modulator
simultaneously sends a synchronizing signal to trigger the transmitter and the
indicator sweep. This establishes a control for the pulse repetition rate (PRR) and
provides a reference for the timing of the travel of a transmitted pulse to a target
and its return as an echo.

Transmitter

The transmitter is basically an oscillator which generates radio-frequency
(r-f) energy in the form of short powerful pulses as a result of being turned
on and off by the triggering signals from the modulator. Because of the
frequencies and power outputs required, the transmitter oscillator is a special
type known as a MAGNETRON.

Transmitting and Receiving Ante

The function of the antenna
transmitter, radiate this energy
echoes or reflections of transm
echoes to the receiver.

In carrying out this function th
conducted to a FEEDHORN at t
which the energy is radiated in a
and reflected energy (returned
conducted by a common path.

This common path is an elec
A waveguide is hollow copper t
having dimensions according to
the frequency of the oscillations

Because of this use of a co
TRANSMIT-RECEIVE (TR) TU
transmit to receive functions, an
receiver from damage by the po
TR tube, as shown in figure 1
receiver. During the relatively lo
the TR tube permits the returnin
any of the very weak echoes fro
device known as an ANTI-TR (A
these echoes to the transmitter.
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Figure 1.14 - A basic radar system.
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20

The feedhorn at the upper extremity of the waveguide directs the
transmitted energy towards the reflector, which focuses this energy into a
narrow beam. Any returning echoes are focused by the reflector and directed
toward the feedhorn. The echoes pass through both the feedhorn and
waveguide enroute to the receiver. The principles of a parabolic reflector are
illustrated in figure 1.15.

Since the r-f energy is transmitted in a narrow beam, particularly narrow
in its horizontal dimension, provision must be made for directing this beam
towards a target so that its range and bearing may be measured. Normally,
this is accomplished through continuous rotation of the radar beam at a rate
of about 10 to 20 revolutions per minute so that it will impinge upon any
targets which might be in its path. Therefore, in this basic radar system the
upper portion of the waveguide, including the feedhorn, and the reflector are
constructed so that they can be rotated in the horizontal plane by a drive
motor. This rotatable antenna and reflector assembly is called the
SCANNER.

Figure 1.16 illustrates a SLOTTED WAVEGUIDE ANTENNA and notice
that there is no reflector or feedhorn. The last few feet of the waveguide is
constructed so that it can be rotated in the horizontal plane. The forward and
narrower face of the rotatable waveguide section contains a series of slots
from which the r-f energy is emitted to form a narrow radar beam. Returning
echoes also pass through these slots and then pass through the waveguide to
the receiver.

Receiver

The function of the receiver is
very weak r-f echoes and reprod
indicator. The receiver contains
amplification stages required
indicator.

Figure 1.15 - Principles of a parabolic reflector.

Figure 1.16 - Slot
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and repeatedly deflected radially from the
CE is formed on the PPI. Should the flow of
e will continue to glow for a short period
ectron beam because of the phosphorescent
rightness is known as PERSISTENCE; the

persistence.
riggers the transmitter, it sends a TIMING
tor. The latter signal acts to deflect the
center of the CRT screen (PPI) to form a

the electron beam. This radial movement of
SWEEP or TIME BASE. While the terms

ly used interchangeably, the term trace is
idence of the sweep movement.
eflected from the center of the CRT screen
er, the sweep must be repeated very rapidly
tition rates are used. With a pulse repetition
the sweep must be repeated 750 times per
obvious why the sweep appears as a solid

e speed of movement of the point of
eam is far in excess of the capability of

ated in accordance with the PRR, the actual
lectron beam is governed by the size of the
represented by the radius of this screen

being used. If the 20-mile range scale is
st be deflected radially from the center of the

radius at a rate corresponding to the time
rgy to travel twice the distance of the range
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he center of the CRT screen to its periphery

quency - frequency energy =
m per microsecond

 = Speed X Time

9 nm per microsecond =
icroseconds

e rate of travel of the electron beam in this
se on the PPI which may be used for direct
targets without further need to take into
Indicator

The primary function of the indicator is to provide a visual display of the
ranges and bearings of radar targets from which echoes are received. In this
basic radar system, the type of display used is the PLAN POSITION
INDICATOR (PPI), which is essentially a polar diagram, with the
transmitting ship’s position at the center. Images of target echoes are
received and displayed at either their relative or true bearings, and at their
distances from the PPI center. With a continuous display of the images of the
targets, the motion of the target relative to the motion of the transmitting ship
is also displayed.

The secondary function of the indicator is to provide the means for
operating various controls of the radar system.

The CATHODE-RAY TUBE (CRT), illustrated in figure 1.17, is the heart
of the indicator. The CRT face or screen, which is coated with a film of
phosphorescent material, is the PPI. The ELECTRON GUN at the opposite
end of the tube (see figure 1.18) emits a very narrow beam of electrons
which impinges upon the center of the PPI unless deflected by electrostatic
or electromagnetic means. Since the inside face of the PPI is coated with
phosphorescent material, a small bright spot is formed at the center of the
PPI.

If the electron beam is rapidly
center, a bright line called a TRA
electrons be stopped, this trac
following the stoppage of the el
coating. The slow decay of the b
slower the decay the higher the 

At the instant the modulator t
TRIGGER signal to the indica
electron beam radially from the
trace of the radial movement of
the electron beam is called the
trace and sweep are frequent
descriptive only of the visible ev

Since the electron beam is d
with each pulse of the transmitt
even when the lower pulse repe
rate of 750 pulses per second,
second. Thus, it should be quite
luminous line on the PPI. Th
impingement of the electron b
detection by the human eye.

While the sweep must be repe
rate of radial movement of the e
CRT screen and the distance
according to the range scale
selected, the electron beam mu
CRT screen having a particular
required for radio-frequency ene
scale or 40 nautical miles. When
beam must move radially from t
in 247 microseconds.

Speed of radio fre
0.161829 n

Distance

40 nm÷ 0.16182
247 m

The objective of regulating th
manner is to establish a time ba
measurements of distances to

Figure 1.17 - Electromagnetic cathode-ray tube.
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account the fact that the transmitted pulse and its reflected echo make a
round trip to and from the target. With the periphery of the PPI representing
a distance of 20 miles from the center of the PPI at the 20-mile range scale
setting, the time required for the electron beam to move radially from the

center to the periphery is the sa
pulse to travel to a target at 20 m
echo or the time to travel 40 mil
sweep or time base halfway bet

Figure 1.18 - The sweep on the plan position indicator.
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in synchronization with the rotation of the
am may be deflected radially by electrostatic
weep may be rotated by the same means. The
magnetically in modern radars.
past the ship’s heading, the sweep, in

na, is rotated past the 0˚ graduation on the
The image of any target detected ahead is
e bearing and distance from the center of
ted in other directions, their images are

tive bearings and distances from the center

n of how target information is displayed on
w the target images are painted, virtually
es and relative bearings from the reference
It follows that through continuous display
rsistence of the CRT screen and the pulse
f targets on the PPI, their motions relative to
 are also displayed.
his basic radar system provides the means
n a useful form, the relative bearings and
ch reflected echoes may be received. In
e targets relative to the reference ship
he targets relative to the motion of the
represents a distance of 10 miles from the center of the PPI. The foregoing
assumes that the rate of travel of the electron beam is constant, which is the
usual case in the design of indicators for navigational radar.

If the antenna is trained on a target at 10 miles while using the 20-mile
range scale, the time for the 20-mile round trip of the transmitted pulse and
the returning echo is 123.5 microseconds. At 123.5 microseconds, following
the instant of triggering the transmitter and sending the timing trigger pulse
to the indicator to deflect the electron beam radially, the electron beam will
have moved a distance of 10 miles in its sweep or on the time base. On
receiving the echo at 123.5 microseconds after the instant of the pulse, the
receiver sends a video signal to the indicator which in turn acts to intensify
or brighten the electron beam at the point in its sweep at 123.5
microseconds, i.e., at 10 miles on the time base. This brightening of the trace
produced by the sweep at the point corresponding to the distance to the
target in conjunction with the persistence of the PPI produces a visible image
of the target. Because of the pulse repetition rate, this painting of an image
on the PPI is repeated many times in a short period, resulting in a steady
glow of the target image if the target is a reasonably good reflector.

In navigational and collision avoidance applications of radar, the antenna
and the beam of r-f energy radiated from it are rotated at a constant rate,
usually about 10 to 20 revolutions per minute in order to detect targets all
around the observer’s ship. In the preceding discussion of how a target image
is painted on the PPI, reference is made only to radial deflection of the
electron beam to produce the sweep or time base. If target images are to be
painted at their relative bearings as well as distances from the center of the

PPI, the sweep must be rotated
antenna. Just as the electron be
or electromagnetic means, the s
sweep is usually rotated electro

As the antenna is rotated
synchronization with the anten
relative bearing dial of the PPI.
painted on the PPI at its relativ
the PPI. As targets are detec
painted on the PPI at their rela
of the PPI.

Up to this point the discussio
the PPI has been limited to ho
instantaneously, at their distanc
ship at the center of the PPI.
(continuous because of the pe
repetition rate) of the positions o
the motion of the reference ship

In summary, the indicator of t
for measuring and displaying, i
distances to targets from whi
displaying the positions of th
continuously, the motions of t
reference ship are evident.
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seen on the scope at greater ranges, provided
radar antenna and the target. Conducting

r example) return relatively strong echoes
a wood hull of a fishing boat, for example)

rovide greater detection ranges but are more

rotates, the greater is the detection range of
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e through its beam width.
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there is only 1 pulse transmitted each 0.090˚
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FACTORS AFFECTING DETECTION, DISPLAY, AND MEASUREMENT OF RAD

FACTORS AFFECTING MAXIMUM RANGE

Frequency

The higher the frequency of a radar (radio) wave, the greater is the
attenuation (loss in power), regardless of weather. Lower radar frequencies
(longer wavelengths) have, therefore, been generally superior for longer
detection ranges.

Peak Power

The peak power of a radar is its useful power. Range capabilities of the
radar increase with peak power. Doubling the peak power increases the
range capabilities by about 25 percent.

Pulse Length

The longer the pulse length, the greater is the range capability of the radar
because of the greater amount of energy transmitted.

Pulse Repetition Rate

The pulse repetition rate (PRR) determines the maximum measurable
range of the radar. Ample time must be allowed between pulses for an echo
to return from any target located within the maximum workable range of the
system. Otherwise, echoes returning from the more distant targets are
blocked by succeeding transmitted pulses. This necessary time interval
determines the highest PRR that can be used.

The PRR must be high enough, however, that sufficient pulses hit the
target and enough echoes are returned to the radar. The maximum
measurable range can be determined approximately by dividing 81,000 by
the PRR.

Beam Width

The more concentrated the beam, the greater is the detection range of the
radar.

Target Characteristics

Targets that are large can be
line-of-sight exists between the
materials (a ship’s steel hull, fo
while nonconducting materials (
return much weaker echoes.

Receiver Sensitivity

The more sensitive receivers p
subject to jamming.

Antenna Rotation Rate

The more slowly the antenna
the radar.

For a radar set having a PR
beam width of 2.0˚, and an ante
10 seconds or 36 scanning deg
each 0.036˚ of rotation. There
required for the antenna to rotat

With an antenna rotation rate
scanning degrees per second),
of rotation. There are only 22 pu
the antenna to rotate through its

From the foregoing it is appar
the maximum ranges at which
detected are reduced.

Beam Width
Degrees per Pu
---------------------------------------------------

Beam Width
Degrees per Puls
-----------------------------------------------------
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na and return to the receiver. This error causes
r than their true values.
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a flat plate right at the antenna not at the
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FACTORS AFFECTING MINIMUM RANGE

Pulse Length

The minimum range capability of a radar is determined primarily by the
pulse length. It is equal to half the pulse length of the radar (164 yards per
microsecond of pulse length). Electronic considerations such as the recovery
time of the receiver and the duplexer (TR and anti-TR tubes assembly)
extend the minimum range at which a target can be detected beyond the
range determined by the pulse length.

Sea Return

Sea return or echoes received from waves may clutter the indicator within
and beyond the minimum range established by the pulse length and recovery
time.

Side-Lobe Echoes

Targets detected by the side-lobes of the antenna beam pattern are called
side-lobe echoes. When operating near land or large targets, side-lobe echoes
may clutter the indicator and prevent detection of close targets, without
regard to the direction in which the antenna is trained.

Vertical Beam Width

Small surface targets may escape the lower edge of the vertical beam
when close.

FACTORS AFFECTING RANGE ACCURACY

The range accuracy of radar depends upon the exactness with which the
time interval between the instants of transmitting a pulse and receiving the
echo can be measured.

Fixed Error

A fixed range error is caused by the starting of the sweep on the indicator
before the r-f energy leaves the antenna. The zero reference for all range
measurements must be the leading edge of the transmitted pulse as it appears on
the indicator. Inasmuch as part of the transmitted pulse leaks directly into the
receiver without going to the antenna, a fixed error results from the time required

for r-f energy to go up to the anten
the indicated ranges to be greate

A device called a trigger dela
By this means the trigger puls
amount. Such a delay results i
would return to the indicator from
instant that the pulse is generate
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Frequency Drift

Errors in ranging also can be
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usually in error by 2 to 3 percen
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adjustable range ring which is the normal means for range measurements.
With the VRM calibrated with respect to the fixed range rings within a
tolerance of 1 percent of the maximum range of the scale in use, ranges as
measured by the VRM may be in error by as much as 21/2 percent of the
maximum range of the scale in use. With the indicator set on the 8-mile
range scale, the error in a range as measured by the VRM may be in error by
as much as 0.2 nautical mile.

Pip and VRM Alignment

The accuracy of measuring ranges with the VRM is dependent upon the
ability of the radar observer to align the VRM with the leading edge of the pip on
the PPI. On the longer range scales it is more difficult to align the VRM with the
pip because small changes in the reading of the VRM range counter do not result
in appreciable changes in the position of the VRM on the PPI.

Range Scale

The higher range scale settings result in reduced accuracy of fixed range
ring and VRM measurements because of greater calibration errors and the
greater difficulty of pip and VRM alignment associated with the higher
settings.

PPI Curvature

Because of the curvature of the PPI, particularly in the area near its periphery,
range measurements of pips near the edge are of lesser accuracy than the
measurements nearer the center of the PPI.

Radarscope Interpretation

Relatively large range errors can result from incorrect interpretation of a
landmass image on the PPI. The difficulty of radarscope interpretation can
be reduced through more extensive use of height contours on charts.

For reliable interpretation it is essential that the radar operating controls
be adjusted properly. If the receiver gain is too low, features at or near the
shoreline, which would reflect echoes at a higher gain setting, will not
appear as part of the landmass image. If the receiver gain is too high, the
landmass image on the PPI will “bloom”. With blooming the shoreline will
appear closer than it actually is.

A fine focus adjustment is necessary to obtain a sharp landmass image on
the PPI.

Because of the various factors introducing errors in radar range
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Figure 1.19 - Pulse length and range resolution.
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The data below indicates the minimum separation in range for two targets
to appear as separate echoes on the PPI for various pulse lengths.

Receiver Gain

Range resolution can be improved by proper adjustment of the receiver
gain control. As illustrated in figure 1.20, the echoes from two targets on the
same bearing may appear as a single pip on the PPI if the receiver gain
setting is too high. With reduction in the receiver gain setting, the echoes
may appear as separate pips on the PPI.

CRT Spot Size

The range separation require
formed by the electron beam o
into a point of light. The increase
with the size of the CRT and the

On the longer range scales, t
is appreciable.

Range Scale

The pips of two targets separa
PPI when one of the longer rang
scale possible and proper adjus
detection as separate targets. If t
display of the targets on a shorter

Pulse Length
(microseconds)

Range Resolution
(yards)

0.05 8
0.10 16
0.20 33
0.25 41
0.5 82
1.2 197

Figure 1.20 - Receiver gain and range resolution.

CRT Diameter
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(nau

Nominal Effective

9 7.5

12 10.5

16 14.4
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 BEARING RESOLUTION

re of the capability of a radar to display as
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ect the bearing resolution of a radar are
e to the targets, and CRT spot size.

, the painting of a pip on the PPI begins as
radar beam strikes the target. The painting of
ling edge of the beam is rotated beyond the
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FACTORS AFFECTING BEARING ACCURACY

Horizontal Beam Width

Bearing measurements can be made more accurately with the narrower
horizontal beam widths. The narrower beam widths afford better definition
of the target and, thus, more accurate identification of the center of the target.
Several targets close together may return echoes which produce pips on the
PPI which merge, thus preventing accurate determination of the bearing of a
single target within the group.

The effective beam width can be reduced through lowering the receiver
gain setting. In reducing the sensitivity of the receiver, the maximum
detection range is reduced, but the narrower effective beam width provides
better bearing accuracy.

Target Size

For a specific beam width, bearing measurements of small targets are
more accurate than large targets because the centers of the smaller pips of
the small targets can be identified more accurately.

Target Rate of Movement

The bearings of stationary or slowly moving targets can be measured
more accurately than the bearings of faster moving targets.

Stabilization of Display

Stabilized PPI displays provide higher bearing accuracies than
unstabilized displays because they are not affected by yawing of the ship.

Sweep Centering Error

If the origin of the sweep is not accurately centered on the PPI, bearing
measurements will be in error. Greater bearing errors are incurred when the
pip is near the center of the PPI than when the pip is near the edge of the PPI.

Since there is normally some
measurements can be made b
position away from the center of

Parallax Error

Improper use of the mechan
errors. On setting the cursor to
from a position directly in front
some stabilized displays provide
mechanical bearing cursors bec
cursor are not affected by parall

Heading Flash Alignment

For accurate bearing measu
with the PPI display must be suc
with relatively accurate visual
antenna.

FACTORS AFFECTING
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separate pips the echoes recei
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The principal factors that aff
horizontal beam width, the rang

Horizontal Beam Width

As the radar beam is rotated
soon as the leading edge of the
the pip is continued until the trai
target. Therefore, the pip is dis
effective horizontal beam width.



As illustrated in figure 1.21, in which a horizontal beam width of 10˚ is center of the pip.

1 - Angular distortion.
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used for graphical clarity only, the actual bearing of a small target having
good reflecting properties is 090˚, but the pip as painted on the PPI extends
from 095˚ to 085˚. The left 5˚ and the right 5˚ are painted while the antenna
is not pointed directly towards the target. The bearing must be read at the

Figure 1.2
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uired for resolution is increased because the
eam on the screen of the CRT cannot be
e increase in the pip width because of CRT

f the CRT and the range scale in use.

ELENGTH

g at the shorter wavelengths are more subject
adars transmitting at the longer wavelengths.
PPI displays of two radars of different

teaming in a rain squall and a choppy sea.
nti-sea clutter controls, the clutter is more

ar having the shorter wavelength. Also, three
d on the PPI of the radar having the longer
d on the PPI of the radar having the shorter

he anti-rain and anti-sea clutter controls, the
etected on the PPI of the radar having the
o much of the energy has been absorbed or

tes detection of close targets by a radar
ngth and no detection of these targets by a
avelength.

 - Bearing resolution.
Range of Targets

Assuming a more representative horizontal beam width of 2˚, the pip of a
ship 400 feet long observed beam on at a distance of 10 nautical miles on a
bearing of 090˚ would be painted on the PPI between 091.2˚ and 088.8˚, the
actual angular width of the target being 0.4˚. The pip of a ship 900 feet long
observed beam on at the same distance and bearing would be painted on the
PPI between 091.4˚ and 088.6˚, the angular width of the target being 0.8˚.
Since the angular widths of the pips painted for the 400 and 900-foot targets
are 1.4˚ and 1.8˚, respectively, any attempt to estimate target size by the
angular width of the pip is not practical, generally.

Since the pip of a single target as painted on the PPI is elongated
angularly an amount equal to beam width, two targets at the same range must
be separated by more than one beam width to appear as separate pips. The
required distance separation depends upon range. Assuming a 2˚ beam
width, targets at 10 miles must be separated by over 0.35 nautical miles or
700 yards to appear as separate pips on the PPI. At 5 miles the targets must
be separated by over 350 yards to appear as separate pips if the beam width
is 2˚.

Figure 1.22 illustrates a case in which echoes are being received from four
targets, but only three pips are painted on the PPI. Targets A and B are
painted as a single pip because they are not separated by more than one beam
width; targets C and D are painted as separate pips because they are
separated by more than one beam width.

In as much as bearing resolution is determined primarily by horizontal
beam width, a radar with a narrow horizontal beam width provides better
bearing resolution than one with a wide beam.

CRT Spot Size

The bearing separation req
spot formed by the electron b
focused into a point of light. Th
spot size varies with the size o

WAV

Generally, radars transmittin
to the effects of weather than r

Figure 1.23 illustrates the
wavelengths aboard a ship s
Without use of anti-rain and a
massive on the PPI of the rad
targets, which can be detecte
wavelength, cannot be detecte
wavelength. Following use of t
three targets still cannot be d
shorter wavelength because to
attenuated by the rain.

Similarly, figure 1.24 illustra
having a relatively long wavele
radar having a relatively short w

Figure 1.22
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Two identical 8 mile range PPI pictures taken on Raytheon 3 cm. and 10 cm. radars in a rain squall and with a choppy sea. Three
225˚, 294˚ and 330˚ shown on the 10 cm. radar right are not shown on the 3 cm. radar left.

On both radars the anti-rain and anti-sea clutter devices are switched in. The three ships are clearly visible on the 10 cm. radar right.
targets visible on the 3 cm. radar left as the echo power has been absorbed by rain.

Reproduced by Courtesy of the Raytheon Company.

Figure 1.23- Effects of rain and sea on PPI displays of radars having different wavelengths.
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10 cm. radar right

visible on the 10
Two identical 20 mile range PPI pictures taken on Raytheon 3 cm. and 10 cm. radars showing the effects of sea clutter. On the
targets inside the 5 mile range marker are clearly visible. On the 3 cm. radar left the close range targets are missing.

On both radars the anti-sea clutter control has been carefully adjusted to remove sea clutter. The close range targets are clearly
cm. right, whereas they are missing on the 3 cm. radar left.

Reproduced by Courtesy of the Raytheon Company.

Figure 1.24 - Effects of sea on PPI displays of radars having different wavelengths.



y give echoes of varying strength, depending
t right angles to the radar beam, such as the
liff along the shore, will reflect very strong
, this flat surface will tend to reflect more of
om the antenna, and may give rather weak
l tend to focus the radar beam back to the

will tend to scatter the energy. A smooth
ergy back to the antenna. However, echoes

 if the conical surface is rough.

modify the effects of shape and aspect. A
the reflection qualities, and will increase the
less the aspect and shape of the target are

ed directly back to the antenna, the smooth
ho because most of the energy is reflected in
hand, a rough surface will tend to break up
the strength of echoes returned from those
t normally give weak echoes.

ces to reflect radar pulses depends on the
hose substances. Thus metal and water are
ctor, depending on aspect. Land areas vary
ding on the amount and type of vegetation

ent. Wood and fiber glass boats are poor
ed that all of the characteristics interact with
ngth of the radar echo, and no factor can be

the effects of the others.
34

TARGET CHARACTERISTICS

There are several target characteristics which will enable one target to be
detected at a greater range than another, or for one target to produce a
stronger echo than another target of similar size.

Height

Since radar wave propagation is almost line of sight, the height of the
target is of prime importance. If the target does not rise above the radar
horizon, the radar beam cannot be reflected from the target. Because of the
interference pattern, the target must rise somewhat above the radar horizon.

Size

Up to certain limits, targets having larger reflecting areas will return
stronger echoes than targets having smaller reflecting areas. Should a target
be wider than the horizontal beam width, the strength of the echoes will not
be increased on account of the greater width of the target because the area
not exposed to the radar beam at any instant cannot, of course, reflect an
echo. Since the vertical dimensions of most targets are small compared to the
vertical beam width of marine navigational radars, the beam width limitation
is not normally applicable to the vertical dimensions. However, there is a
vertical dimension limitation in the case of sloping surfaces or stepped
surfaces. In this case, only the projected vertical area lying within the
distance equivalent of the pulse length can return echoes at any instant.

Aspect

The aspect of a target is its orientation to the axis of the radar beam. With
change in aspect, the effective reflecting area may change, depending upon
the shape of the target. The nearer the angle between the reflecting area and
the beam axis is to 90˚, the greater is the strength of the echo returned to the
antenna.

Shape

Targets of identical shape ma
on aspect. Thus a flat surface a
side of a steel ship or a steep c
echoes. As the aspect changes
the energy of the beam away fr
echoes. A concave surface wil
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in their reflection qualities depen
and the rock and mineral cont
reflectors. It must be remember
each other to determine the stre
singled out without considering 


	INTRODUCTION
	A BRIEF HISTORY
	RADAR PROPAGATION CHARACTERISTICS
	THE RADIO WAVE
	Figure 1.1 - Wave.

	THE RADAR BEAM
	Figure 1.2 - Free space radiation pattern.
	Beam Width
	Figure 1.3 - Radiation diagram.


	EFFECT OF SEA SURFACE ON RADAR BEAM
	Figure 1.4 - Direct and indirect waves.
	Figure 1.5 - Vertical-plane coverage diagram (3050 MHz, antenna height 125 feet, wave height 4 fe...
	Figure 1.6 - Vertical-plane coverage diagram (1000 MHz, vertical beam width 10˚, antenna height 8...


	ATMOSPHERIC FACTORS AFFECTING THE RADAR HORIZON
	THE RADAR HORIZON
	DIFFRACTION
	REFRACTION
	Standard Atmospheric Conditions
	Figure 1.7 - Refraction.

	Sub-refraction
	Figure 1.8 - Sub-refraction.

	Super-refraction
	Figure 1.9 - Super-refraction.

	Extra Super-refraction or Ducting
	Figure 1.10 - Ducting.

	Ducting Areas
	Figure 1.11 - Ducting areas.


	WEATHER FACTORS AFFECTING THE RADAR HORIZON
	Attenuation by rain, fog, clouds, hail, snow, and dust
	Rain
	Fog
	Clouds
	Hail
	Snow
	Dust
	Unusual Propagation Conditions


	A BASIC RADAR SYSTEM
	RADAR SYSTEM CONSTANTS
	Carrier Frequency
	Pulse Repetition Frequency
	Pulse Length
	Power Relation
	Figure 1.12 - Relationship of peak and average power.


	COMPONENTS AND SUMMARY OF FUNCTIONS
	Figure 1.13 - Block diagram of a basic pulse-modulated radar system

	FUNCTIONS OF COMPONENTS
	Power Supply
	Modulator
	Transmitter
	Transmitting and Receiving Antenna System
	Figure 1.14 - A basic radar system.
	Figure 1.15 - Principles of a parabolic reflector.
	Figure 1.16 - Slotted waveguide antenna.

	Receiver
	Indicator
	Figure 1.17 - Electromagnetic cathode-ray tube.
	Figure 1.18 - The sweep on the plan position indicator.



	FACTORS AFFECTING DETECTION, DISPLAY, AND MEASUREMENT OF RADAR TARGETS
	FACTORS AFFECTING MAXIMUM RANGE
	Frequency
	Peak Power
	Pulse Length
	Pulse Repetition Rate
	Beam Width
	Target Characteristics
	Receiver Sensitivity
	Antenna Rotation Rate

	FACTORS AFFECTING MINIMUM RANGE
	Pulse Length
	Sea Return
	Side-Lobe Echoes
	Vertical Beam Width

	FACTORS AFFECTING RANGE ACCURACY
	Fixed Error
	Line Voltage
	Frequency Drift
	Calibration
	Pip and VRM Alignment
	Range Scale
	PPI Curvature
	Radarscope Interpretation

	FACTORS AFFECTING RANGE RESOLUTION
	Pulse Length
	Figure 1.19 - Pulse length and range resolution.

	Receiver Gain
	Figure 1.20 - Receiver gain and range resolution.

	CRT Spot Size
	Range Scale

	FACTORS AFFECTING BEARING ACCURACY
	Horizontal Beam Width
	Target Size
	Target Rate of Movement
	Stabilization of Display
	Sweep Centering Error
	Parallax Error
	Heading Flash Alignment

	FACTORS AFFECTING BEARING RESOLUTION
	Horizontal Beam Width
	Figure 1.21 - Angular distortion.

	Range of Targets
	Figure 1.22 - Bearing resolution.

	CRT Spot Size

	WAVELENGTH
	TARGET CHARACTERISTICS
	Height
	Size
	Aspect
	Shape
	Texture
	Composition



